Mutations in the KCNQ4 gene are responsible for autosomal dominant deafness in four DFNA2 families.

نویسندگان

  • P J Coucke
  • P Van Hauwe
  • P M Kelley
  • H Kunst
  • I Schatteman
  • D Van Velzen
  • J Meyers
  • R J Ensink
  • M Verstreken
  • F Declau
  • H Marres
  • K Kastury
  • S Bhasin
  • W T McGuirt
  • R J Smith
  • C W Cremers
  • P Van de Heyning
  • P J Willems
  • S D Smith
  • G Van Camp
چکیده

We have previously found linkage to chromosome 1p34 in five large families with autosomal dominant non-syndromic hearing impairment (DFNA2). In all five families, the connexin31 gene ( GJB3 ), located at 1p34 and responsible for non-syndromic autosomal dominant hearing loss in two small Chinese families, has been excluded as the responsible gene. Recently, a fourth member of the KCNQ branch of the K+channel family, KCNQ4, has been cloned. KCNQ4 was mapped to chromosome 1p34 and a single mutation was found in three patients from a small French family with non-syndromic autosomal dominant hearing loss. In this study, we have analysed the KCNQ4 gene for mutations in our five DFNA2 families. Missense mutations altering conserved amino acids were found in three families and an inactivating deletion was present in a fourth family. No KCNQ4 mutation could be found in a single DFNA2 family of Indonesian origin. These results indicate that at least two and possibly three genes responsible for hearing impairment are located close together on chromosome 1p34 and suggest that KCNQ4 mutations may be a relatively frequent cause of autosomal dominant hearing loss.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetics of hearing loss: focus on DFNA2

The purpose of this review is to assess the current literature on deafness nonsyndromic autosomal dominant 2 (DFNA2) hearing loss and the mutations linked to this disorder. Hearing impairment, particularly nonsyndromic hearing loss, affects multiple families across the world. After the identification of the DFNA2 locus on chromosome 1p34, multiple pathogenic mutations in two genes (GJB3 and KCN...

متن کامل

Impaired surface expression and conductance of the KCNQ4 channel lead to sensorineural hearing loss

KCNQ4, a voltage-gated potassium channel, plays an important role in maintaining cochlear ion homoeostasis and regulating hair cell membrane potential, both essential for normal auditory function. Mutations in the KCNQ4 gene lead to DFNA2, a subtype of autosomal dominant non-syndromic deafness that is characterized by progressive sensorineural hearing loss across all frequencies. Despite recent...

متن کامل

KCNQ4, a Novel Potassium Channel Expressed in Sensory Outer Hair Cells, Is Mutated in Dominant Deafness

Potassium channels regulate electrical signaling and the ionic composition of biological fluids. Mutations in the three known genes of the KCNQ branch of the K+ channel gene family underlie inherited cardiac arrhythmias (in some cases associated with deafness) and neonatal epilepsy. We have now cloned KCNQ4, a novel member of this branch. It maps to the DFNA2 locus for a form of nonsyndromic do...

متن کامل

Mice with altered KCNQ4 K+ channels implicate sensory outer hair cells in human progressive deafness.

KCNQ4 is an M-type K+ channel expressed in sensory hair cells of the inner ear and in the central auditory pathway. KCNQ4 mutations underlie human DFNA2 dominant progressive hearing loss. We now generated mice in which the KCNQ4 gene was disrupted or carried a dominant negative DFNA2 mutation. Although KCNQ4 is strongly expressed in vestibular hair cells, vestibular function appeared normal. Au...

متن کامل

KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway.

Mutations in the potassium channel gene KCNQ4 underlie DFNA2, an autosomal dominant form of progressive hearing loss in humans. In the mouse cochlea, the transcript has been found exclusively in the outer hair cells. By using specific antibodies, we now show that KCNQ4 is situated at the basal membrane of these sensory cells. In the vestibular organs, KCNQ4 is restricted to the type I hair cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 8 7  شماره 

صفحات  -

تاریخ انتشار 1999